

SYNAQUA: Un programme franco-suisse pour la bio-surveillance et la préservation des écosystèmes du lac Léman

J. Guéguen^A, A. Bouchez^A, A. Cordonier^B, I. Domaizon^A, B.J.D. Ferrari^C, S. Jacquet^A, E. Lefrançois^D, A.L. Mazenq^E, A. Pawlowska^F, L. Perret-Gentil^G, F. Rimet^A, J.F. Rubin^H, E. Servoli^F, D. Trevisan^A, R. Vivien^C, J. Pawlowski^G

^A UMR CARRTEL, INRA, Université Savoie Mont Blanc, 74200 Thonon-les-bains, France

^B Direction Générale de l'Eau, Canton de Genève, avenue Sainte-Clotilde 25, CP 78, 1211 Genève 8, Switzerland

Centre Ecotox, Eawag/EPFL, EPFL-ENAC-IIE-GE, station 2, 1015 Lausanne, Switzerland

DASconit Consultants, Parc Scientifique Tony Garnier, 6-8 Espace Henry Vallée, 69366 Lyon Cedex 07, France

^E ASTERS, Conservatoire d'Espaces Naturels de Haute-Savoie, 84 route du Viéran, PAE de Pré Mairy, 74370 Pringy, France

FID-Gene Ecodiagnostics, c/o fondation Eclosion, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland

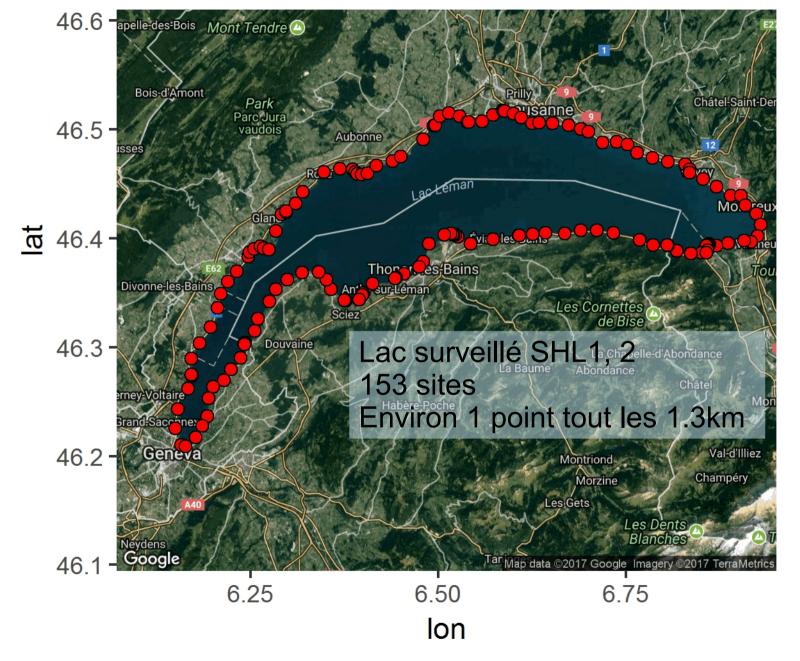
^G UNIGE, 30 quai Ernest Ansermet, 1211 Genève 4, Switzerland

^H Fondation Maison de la Rivière, Chemin du Boiron 2, 1131 Tolochenaz, Switzerland

Colloque ADLAF 2017, Dijon

Le projet SYNAQUA

- Programme lancé en mars 2017
- Récolte des données
- Utiliser les outils génomiques de la bio-surveillance
- Reconnaissance d'organismes bio-indicateurs présents dans l'environnement aquatique directement par leur ADN
 - → diatomées et oligochètes
- · Créer une carte de qualité écologique des rives du lac Léman
- Partie de sensibilisation
 - Scolaires à la surveillance environnementale
 - Acteurs locaux et partenaires



Carte de prélèvements

- ports
- stations d'épuration
- embouchures de rivières
- structure des rives

- ports
- stations d'épuration
- embouchures de rivières
- structure des rives

- ports
- stations d'épuration
- embouchures de rivières
- structure des rives

- ports
- stations d'épuration
- embouchures de rivières
- structure des rives

- ports
- stations d'épuration
- embouchures de rivières
- structure des rives

Existences de pressions locales :

- ports
- stations d'épuration
- embouchures de rivières
- structure des rives

pouvant être mesurées via :

Existences de pressions locales :

- ports
- stations d'épuration
- embouchures de rivières
- structure des rives

pouvant être mesurées via :

• Physico-Chimie

Existences de pressions locales :

- ports
- stations d'épuration
- embouchures de rivières
- structure des rives

pouvant être mesurées via :

- Physico-Chimie
- Communautés algales benthiques
 - Bentho-torche
 - Diversité : moléculaire et microscopique

Existences de pressions locales :

- ports
- stations d'épuration
- embouchures de rivières
- structure des rives

pouvant être mesurées via :

- Physico-Chimie
- Communautés algales benthiques
 - Bentho-torche
 - Diversité : moléculaire et microscopique

Et de pressions plus globales :

bassin versantoccupation du sol

Labo de chimie

Paramètres analysés

Conductivité	рН	TAC	NH ₄ ⁺	N2 ⁻	N3 ⁻	N _{tot}	PO ₄ ³⁻
СОТ	Ca	K⁺	Mg	Na⁺	Cl ⁻	SO42-	P _{tot}

Sonde multi-paramètres (exo)

Conductivité	Température	Oxygène dissous	Turbidité
Chlorophylle	Pression	Profondeur	

Bentho-torche

|--|

Labo de biomol.

Extraction ADN	Amplification (PCR)	Séquençage Illumina

Paramètres analysés

Labo de chimie

Paramètres explicatifs des pressions

-	ra	a	Π	C	e	-	5	u	IS	S	e

Conductivité	рН	TAC	NH ₄ ⁺	N2 ⁻	N3 ⁻	N _{tot}	PO ₄ 3-
COT	Ca	K⁺	Mg	Na⁺	Cl ⁻	SO42-	P _{tot}

Sonde multi-paramètres (exo)

Conductivité	Température	Oxygène dissous	Turbidité
Chlorophylle	Pression	Profondeur	

Bentho-torche

Cyano-bacteries Algues vertes Diatomées Chlorophylle total
--

Labo de biomol.

Extraction ADN	Amplification (PCR)	Séquençage Illumina
		. ,

Paramètres analysés

Paramètres explicatifs des pressions

<u>France - Suisse</u>

Conductivité	рН	TAC	NH ₄ ⁺	N2 ⁻	N3 ⁻	N _{tot}	PO ₄ ³⁻
СОТ	Ca	K⁺	Mg	Na⁺	Cl ⁻	SO42-	P _{tot}

Sonde multi-paramètres (exo)

Conductivité	Température	Oxygène dissous	Turbidité
Chlorophylle	Pression	Profondeur	

Bentho-torche		Vision globale des	concentrations algales
Cyano-bacteries	Algues vertes	Diatomées	Chlorophylle totale

Labo de biomol.

Extraction ADN Amplification (PCR) Séquençage Illumina

Paramètres analysés

Labo de chimie

Paramètres explicatifs des pressions

	a	n	ce	-5	ui	SS	3

Conductivité	рН	TAC	NH ₄ ⁺	N2 ⁻	N3 ⁻	N _{tot}	PO ₄ ³⁻
СОТ	Ca	K⁺	Mg	Na⁺	Cl ⁻	SO42-	P _{tot}

Sonde multi-paramètres (exo)

Conductivité	Température	Oxygène dissous	Turbidité
Chlorophylle	Pression	Profondeur	

Bentho-torche		Vision globale des concentrations algales		
Cyano-bacteries	Algues vertes	Diatomées	Chlorophylle totale	

Labo de biomol.

Structure précise des communautés de diatomées

Extraction ADN

Amplification (PCR)

Séquençage Illumina

Caractérisation des stations

- Protocole simplifié des protocoles « AlBer » et « Charli » (Irstea)
 - Caractérisation des altérations des berges (AlBer)
 - Caractérisation des habitats des rives et du littoral (Charli)

Pressions / Caractérisation

Station	Mesure de pente	Type de fond (substrat)	Type de fond (végétation)	Hydrologie
Station	Occupation du sol	Type de rive	Vagues	Vent
Prélèvement	Météo	Ombrage	Profondeur prélèvement	Substrat prélèvement

Prélèvement des diatomées

- Si le site présente des substrats récoltables :
 - 5 pierres au moins
 - 40cm à 1.5m de profondeur
 - Frotter à la brosse à dent + bassine

Colloque ADLAF 2017, Dijon

Prélèvement des diatomées

- Si le site présente des substrats récoltables :
 - 5 pierres au moins
 - 40cm à 1.5m de profondeur
 - Frotter à la brosse à dent + bassine
- Si le site n'a pas de substrats facile à transporter :
 - Échantillonnage au racloir

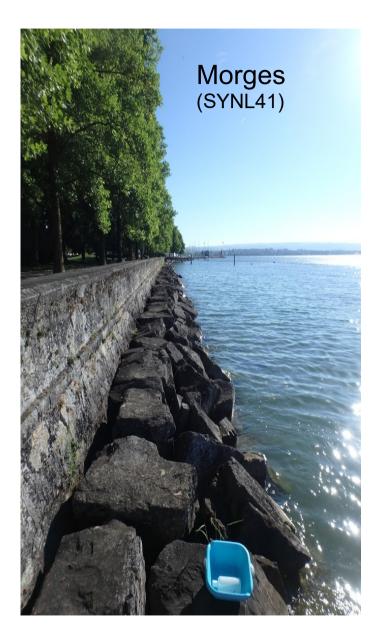
Prélèvement des diatomées

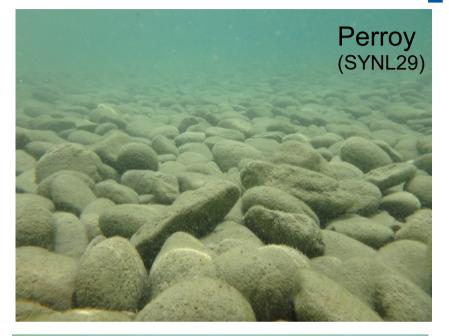
- Si le site présente des substrats récoltables :
 - 5 pierres au moins
 - 40cm à 1.5m de profondeur
 - Frotter à la brosse à dent + bassine

- Si le site n'a pas de substrats facile à transporter :

Échantillonnage au racloir

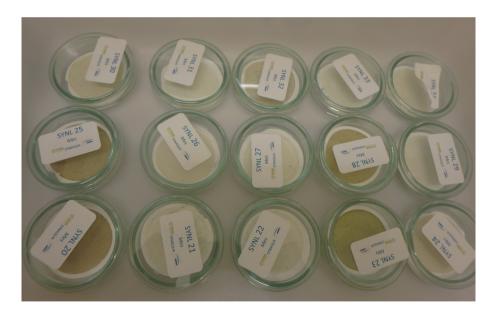
- Dans tous les cas :
 - Mettre le mélange dans un tube
 - Compléter avec éthanol (conservation)

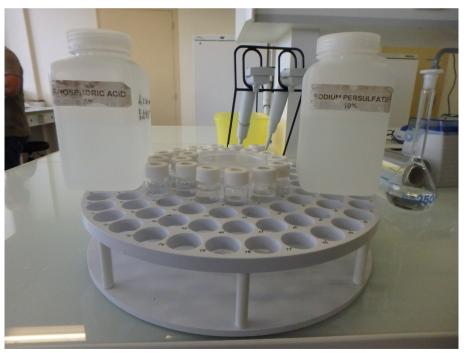

 Rive principalement composée d'enrochements (~ 39%)



Les fonds sont principalement composés de galets (~ 58%)

 8 jours de terrain du 14/06 au 27/06 avec une météo favorable





- ň
- 8 jours de terrain du 14/06 au 27/06 avec une météo favorable
- 154 échantillons d'eau pour les analyses chimiques (dont des paramètres traités le soir même)

- 8 jours de terrain du 14/06 au 27/06 avec une météo favorable
- 154 échantillons d'eau pour les analyses chimiques (dont des paramètres traités le soir même)
- 156 échantillons diatomées

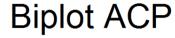
- 8 jours de terrain du 14/06 au 27/06 avec une météo favorable
- 154 échantillons d'eau pour les analyses chimiques (dont des paramètres traités le soir même)
- 156 échantillons diatomées
- 9 personnes sur le terrain

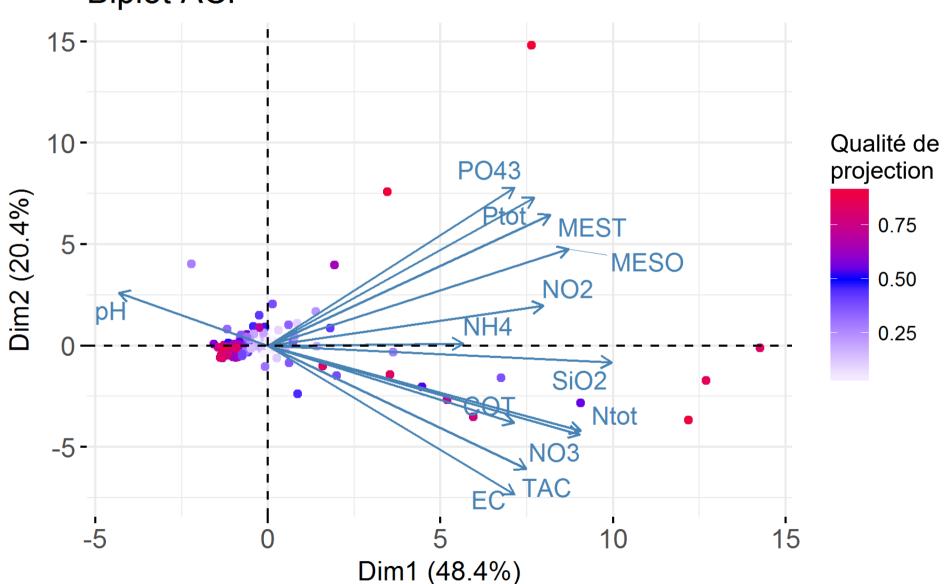
- 8 jours de terrain du 14/06 au 27/06 avec une météo favorable
- 154 échantillons d'eau pour les analyses chimiques (dont des paramètres traités le soir même)
- 156 échantillons diatomées
- 9 personnes sur le terrain
- 5 personnes pour les analyses chimiques

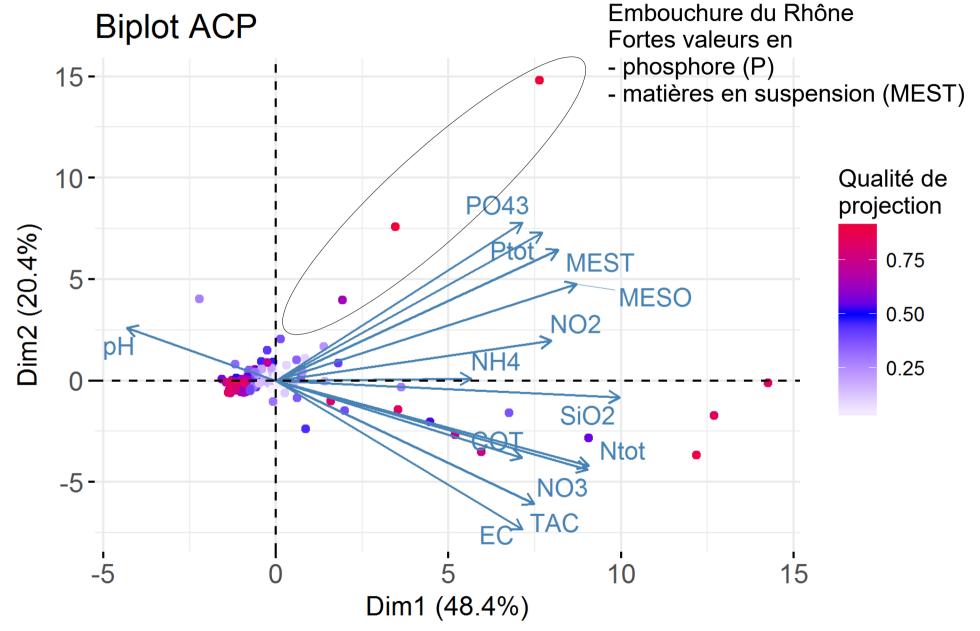
- 8 jours de terrain du 14/06 au 27/06 avec une météo favorable
- 154 échantillons d'eau pour les analyses chimiques (dont des paramètres traités le soir même)
- 156 échantillons diatomées
- 9 personnes sur le terrain
- 5 personnes pour les analyses chimiques
- 6Go de photos des rives et fonds du Léman

- 8 jours de terrain du 14/06 au 27/06 avec une météo favorable
- 154 échantillons d'eau pour les analyses chimiques (dont des paramètres traités le soir même)
- 156 échantillons diatomées
- 9 personnes sur le terrain
- 5 personnes pour les analyses chimiques
- 6Go de photos des rives et fonds du Léman
- Informations sur les substrats, la pente et l'occupation du sol au niveau de chaque station

Résultats (très) préliminaires

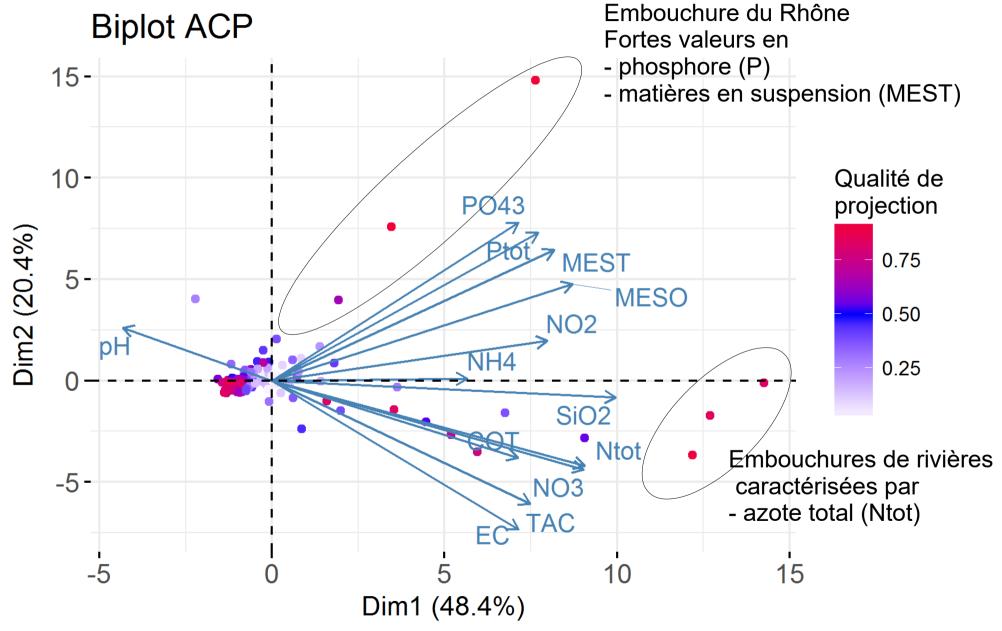

Résultats préliminaires


Analyse chimique



Résultats préliminaires

Analyse chimique



Résultats préliminaires

Résultats préliminaires

Analyse Benthotorche

Bentho-torche

Sonde fluorimétrique benthique

→ Quantifier la biomasse algale du biofilm via la concentration en chlorophylle-A (Chl-a).

Bentho-torche

Sonde fluorimétrique benthique

→ Quantifier la biomasse algale du biofilm via la concentration en chlorophylle-A (Chl-a).

→ Fluorescence des pigments

Bentho-torche

→ Quantifier la biomasse algale du biofilm via la concentration en chlorophylle-A (Chl-a).

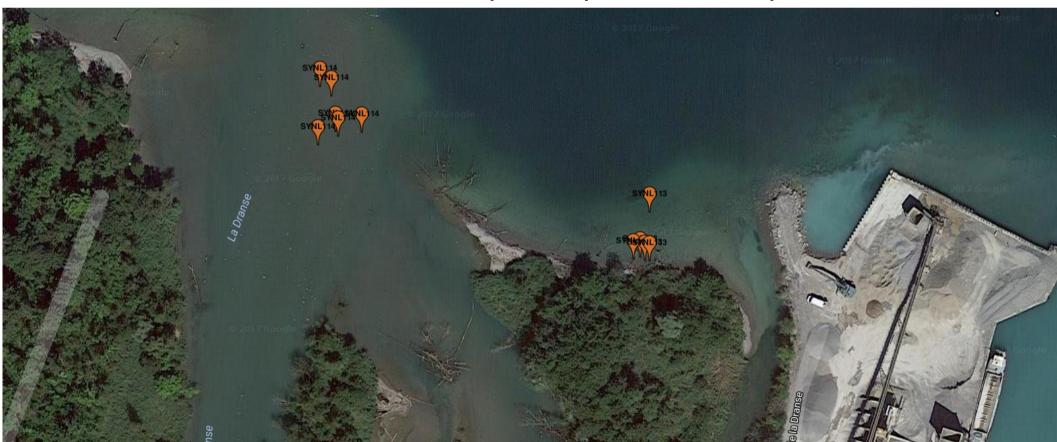
→ Fluorescence des pigments

La différence de fluorescence des pigment permet de distinguer 3 types d'algues :

Cyanobacteries

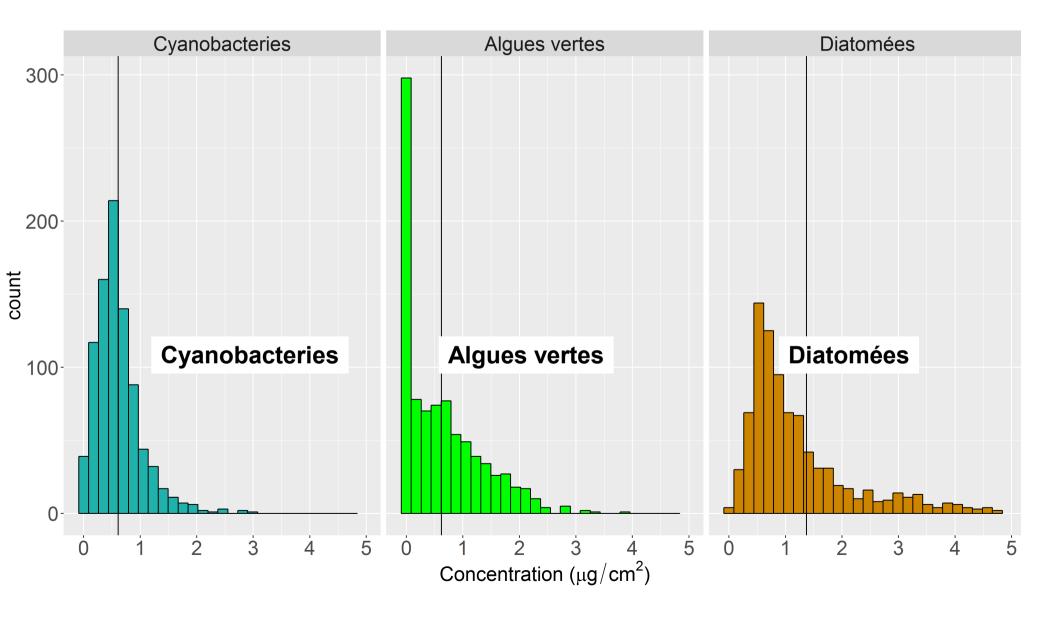
Algues vertes

Diatomées

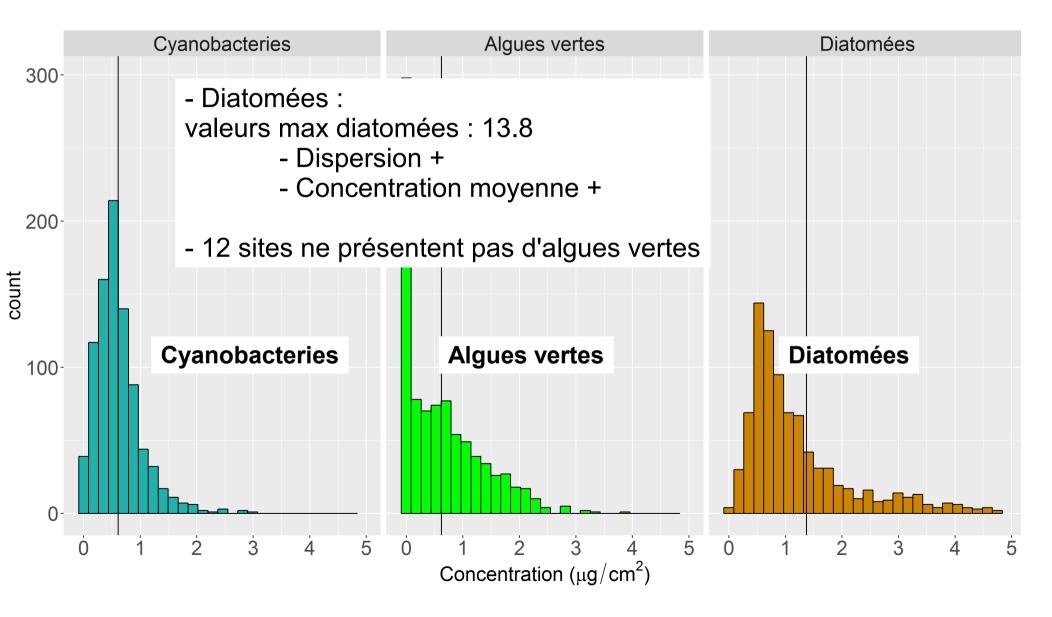


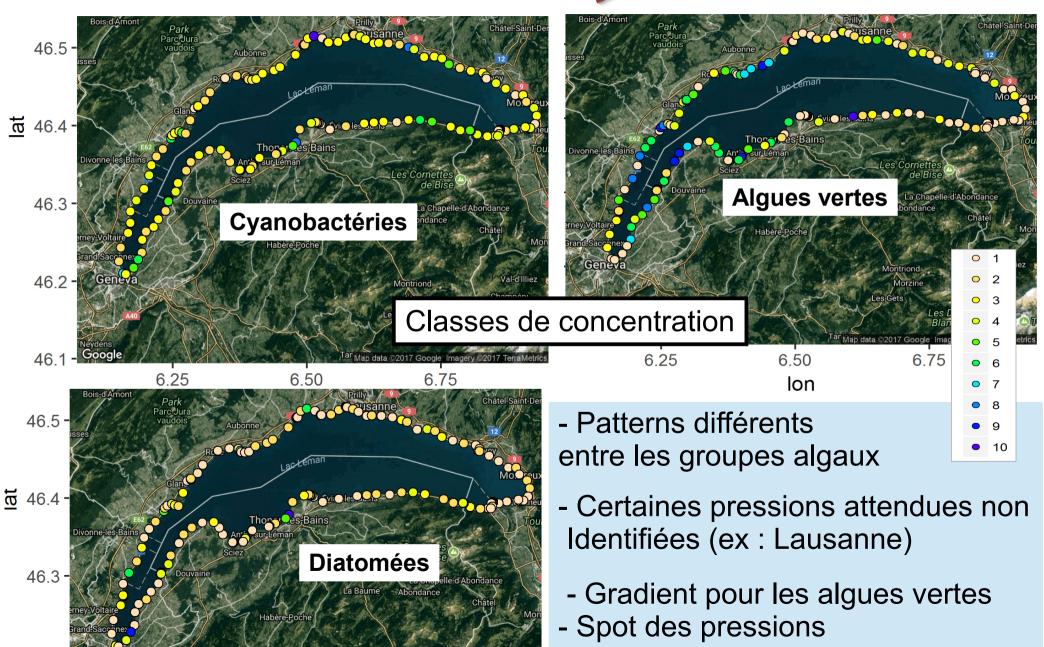
- Chaque site entre 5 et 9 pierres testées
- Les même types de substrat sont prélevés en diatomées et relevés à la sonde
- Les coordonnées GPS sont prises par la sonde pendant la mesure

- Chaque site entre 5 et 9 pierres testées
- Les même types de substrat sont prélevés en diatomées et relevés à la sonde
- Les coordonnées GPS sont prises par la sonde pendant la mesure

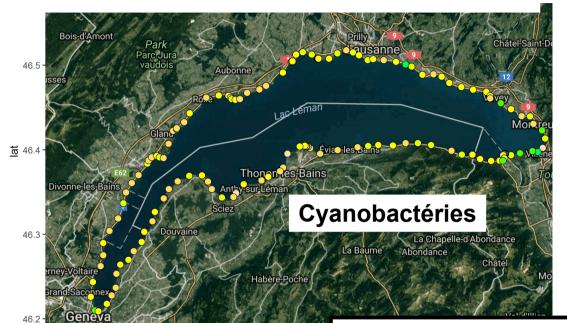

Remarques:

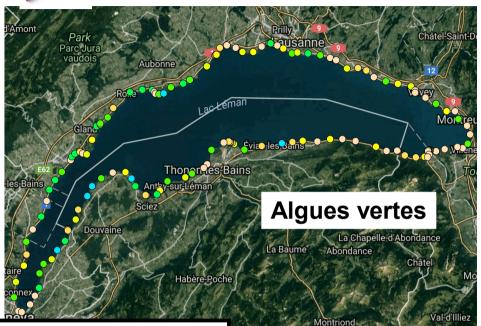
- Grande variablilité intra-site entre les valeurs de concentration
 - variabilité réelle (substrat), sonde
- Quelques différences dans un même site au niveau du GPS




Résultats préliminaires

Analyse BBE


Résultats préliminaires

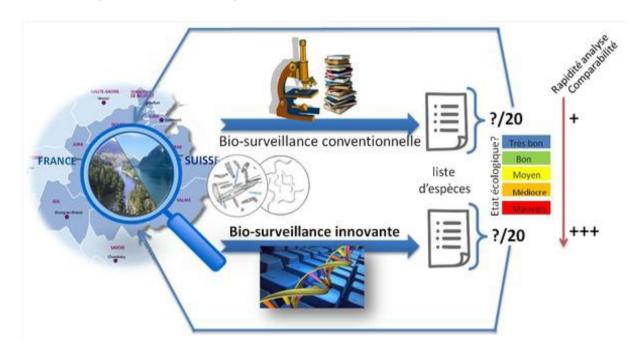

Analyse BBE

Classes de concentration relatives

- concentration des algues par rapport à la concentration totale
 → quelle dominance ?
- Les diatomées ont une proportion plus importante dans 64% des sites.

20 Vertes 32%, cyano 4%

Résultats préliminaires Conclusions préliminaires


- Certains sites avec une chimie particulière facilement repérés (embouchures)
- Différentes réponses aux pressions selon le groupe algal
- Les diatomées ont une biomasse plus importante que les autres, qui justifie d'aller voir au niveau composition spécifique
- Points de pressions pas toujours identifiés via la biomasse

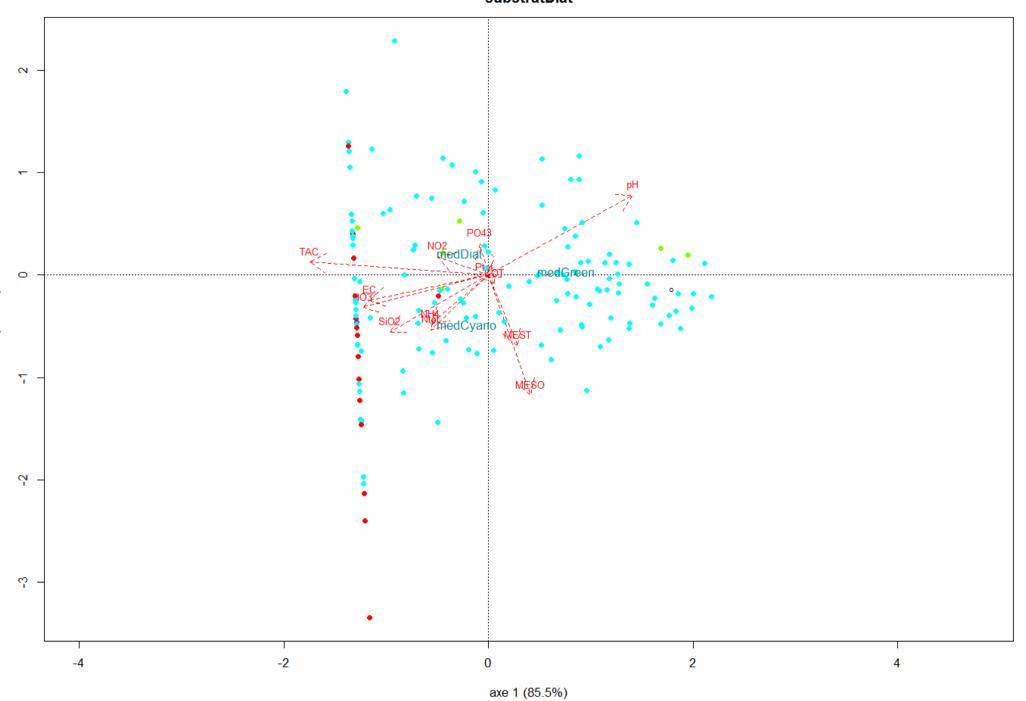
Résultats préliminaires A suivre

- passage à la composition spécifique via le moléculaire et la microscopie (30 sites)

- Suite de l'analyses des données (sonde exo, fiches de pressions...)

Merci de votre attention!

http://inra6.synaqua.inra.fr



CCA triplot scaling 3 : substratDiat

